Problema 919. Let a, b, ¢ be the lengths of the sides of triangle ABC with
inradius 7 and radii of excircles ry, 1, 7, respectively. Prove that

(1) (ry —re)cos A+ (re —7q) cos B4 (rq — 1) cos C' = 0 and

b
(2) (1 4+ 7e) csc A+ (1o +74) csc B+ (rq +13) csc C = %.
r
Proposed by Michel Bataille, Rouen, France.

Solution by Ercole Suppa, Teramo, Italy
Let s, A be the semiperimeter and the area of AABC), respectively.
(1) By using the identities

Tq = stan§ , Ty = stanE , Te= stang

and the sum-to-product formulas, we have:
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(2) By using the identities
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and Heron’s formula, we have:
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and the proof is complete. O



